
Algorithms:

Procedure for performing computation-

Broken into steps-

Inputs/Outputs that are finitely describable-

Good Algorithms:

Must produce correct answer-

In reasonable time-

In reasonable space-

With less energy-

Etc-

CSE 101: Focus on time efficiency

Algorithms, Good Algorithms
Thursday, September 22, 2022 3:26 PM

 CSE 101 Page 1

Modification: modify existing algorithm to solve the new problem

Reduction: reduce the input space such that an unmodified existing algorithm can solve the new problem

Example:

Given a graph where each node is labeled {0, 1} and s,t in V. Find an alternating path from s to t.

Modification:

Modify DFS such that a vertex is recursively called only if it is different from the current vertex

Proof: need to prove both

Any node v visited has a path from s to v that alternates-

Any node v not visited does not have a path from s to v that alternates-

Reduction:

Removing edges from vertex with labels (0, 0) and (1, 1)

Proof: need to prove both

If there is a path from s to t with alternating labels, then the algorithm returns true-

If there is not a path from s to t with alternating labels, then the algorithm returns false-

Prefer reduction over modification

How to perform reduction:

Modify the input1)

Run solution to another problem2)

Check output of step 2 and decide correct return value3)

Modification vs Reduction
Wednesday, September 28, 2022 4:13 PM

 CSE 101 Page 2

X in O(Y) : X <= Y (upper bound)

X in Ω(Y) : X >= Y (lower bound)
X in Θ(Y) : X == Y (tight bound)

X in o(Y) : X < Y

X in w(Y) : X > Y

Runtime Notations
Thursday, September 22, 2022 4:35 PM

 CSE 101 Page 3

If the algorithm is recomputing

values, store and re-use values

Basis for dynamic programming

Store & Re-use (Dynamic Programming)
Thursday, September 22, 2022 4:17 PM

 CSE 101 Page 4

Terminology: G = (V,E) where

V: set of vertices/nodes

E: set of edges which are pairs of vertices

Directed Graphs: E are ordered pairs

Undirected Graphs: E are unordered pairs

Tree Edge: edge traversed by DFS

Back Edge: edge not traversed by DFS

Graph storage methods:

Connected Graphs:

Graph Explore: Find all nodes accessible from v

Depth-First Search: Decompose graph into connected component

Runtime: O(V+E)

each vertex is visited once

during the outer loop

each edge is traversed twice

during the inner loop

Modifying using previsit and postvisit:

pre[v] = initial time of discovery

Post[v] = time of final departure

Graphs, Undirected Connectivity, DFS
Tuesday, September 27, 2022 3:25 PM

 CSE 101 Page 5

Directed DFS: Basically the same as DFS, but edge direction matters

Note: Where the root node is the starting node

Ancestor - Descendent: There is a path from the ancestor to descendent

Parent - Child: Ancestor descendent pair that are one edge apart

Def: Pre/Post Signature of Ancestors

Note: undirected DFS can only have Tree, Forward/Back edges

Directed DFS & Terminology
Thursday, September 29, 2022 3:32 PM

 CSE 101 Page 6

Def: A cycle is a circular path in a directed graph

Def: A graph is acyclic iff it has no cycles

Proof: A directed graph G has a cycle iff DFF encounters a back edge

Cycles
Thursday, September 29, 2022 3:56 PM

 CSE 101 Page 7

Def: A DAG or Directed Acyclic Graph

Idea: Topological ordering

We can use a DAG to find the order of causal things-
Ex: In what order should tasks be performed

Def: A Source is a node with no incoming edges. A Sink is a node with no outgoing edges.

DAGs, Topological Ordering, Source & Sink
Thursday, September 29, 2022 4:05 PM

 CSE 101 Page 8

Def: In directed graphs, u and v are connected iff there is a path u -> v and a path v -> u

Def: Strongly Connected Components are subgraphs where all nodes mutually connected

The Metagraph is the DAG of SCCs

Shrink each SCC into meta-nodes-

Put an edge if there is any edge between two nodes in two meta-nodes-

Finding SCCs:

Property 1: If we run explore on a Sink SCC, then we will precisely identify the SCC-

Property 2: The node with the highest post number, it will be a Source-

Property 3: If components C and C' such that there is an edge from C to C'

then the highest post in C > highest post in C'

-

Algorithm: Finding SCCs

Create a new graph GR by reversing all edges in G

Note: SCC(G) == SCC(GR)

SCCs, Directed Connectivity
Thursday, September 29, 2022 4:16 PM

 CSE 101 Page 9

Idea: any node of distance d+1 must come from node of distance d

Def: Breadth First Search

Time complexity: O(V + E)

Idea: not all edges may have the same weight, use a

Priority Queue to compute least cost path

Def: Dijkstra's Algorithm

Where decreasekey(H,v) updates the key for v to the best

dist[v] seen so far.

Time complexity: O(V + E + V*deletemin + V*insert +

E*decreasekey)

Depends on Priority Queue implementation!

NOTE: Only works for positive weights

Shortest Paths, BFS, Dijkstra's
Tuesday, October 4, 2022 3:33 PM

 CSE 101 Page 10

Def: Array as PQ

Total Dijkstra's runtime: O(V + E + V*V + E) = O(V2)

Def: Binary Heap as PQ

Binary Tree such that each node's children have a less priority key value than itself

Keep supplemental array indexed by V pointing to its position in the Binary Tree

Total Dijkstra's runtime: O(V + E + V*log(V) + E*log(V)) = O((V + E)*log(V))

Def: Fibonacci Heap as PQ

Total Dijkstra's runtime: O(V*log(V)+E)

When to use:

Array Heap

Sparse Graph

E = Θ(V)

No

O(V2)

Yes

O(V*log(V))

Dense Graph

E = Θ(V2)

Yes

O(V2)

No

O(V2*log(V))

Priority Queues
Tuesday, October 4, 2022 4:26 PM

 CSE 101 Page 11

Idea: We want to use negative edge weights, rather than just update edges connected to the current node, update all nodes

with the best distance seen so far

Def: Bellman-Form Algorithm

Time Complexity: O(|V| * |E|)

Def: Better Shortest Path (use topological sort)

Bellman-Ford Algorithm (Negative Dijkstras)
Thursday, October 6, 2022 4:25 PM

 CSE 101 Page 12

Problem: We want to create a tree from a connected undirected graph such that the sum of edge weights is minimal. That is, we

want to find the minimum edges to connect all nodes in a graph.

Prim's Algorithm: pick the lightest edge that keeps the graph connected and does not create a cycle

Runtime: Basically djikstra's but G must be connected E=Ω(V)
Binary Heap: O(E*log(V))

Array: O(V2)

Kruskal's Algorithm: pick the lightest edge that doesn't create a cycle

Procedure Kruskal(G,w):

for all v in V:

makeset(v) // add each verex in its own set

X = {}

sort E in increasing order by weight

for edges (u,v) until |X| = |V| - 1:

if find(u) != find(v):

add edge (u,v) to X

union(u,v)

Minimum Spanning Trees
Tuesday, October 11, 2022 3:26 PM

 CSE 101 Page 13

Any algorithm which creates an MST must fulfil the cut property:

Claim: Let X E be part of some MST T of G=(V,E).

Pick a subset of nodes S V such that T has no edges between S and V-S.
Let e be the lightest edge between S and V-S.

Then X {e} is part of an MST, T'

Idea: Given subsets of vertices S and V-S, then the lightest edge connecting the two subsets is part of an MST

Cut Property
Tuesday, October 11, 2022 4:13 PM

 CSE 101 Page 14

Def: A Disjoin Set has the following operations:

makeset(S): put each element in S into a set by itself

find(u): returns which set contains u

union(u,v): unions the two sets containing u and v

Implementations:

Tree:

Keep a tree where a node represents a tree, and all children are part of that set. Each

node will have a parent and rank.

For makeset(V): set all parent pointers to nil and rank to 0

For find(u): iterate through parents to find the top most node

For union(u,v): set the least rank root node parent to the most rank root node

Update ranks as needed

Runtime:

makeset(S): O(S)

find(u): O(log(V))

union(u,v): O(log(V))

Kruskal: O((V+E)*log(V))

Path Compression: Using a tree, we can set the parent of all nodes encountered in find(u)

directly to the root node:

Disjoint Set Data Structures
Thursday, October 13, 2022 3:29 PM

 CSE 101 Page 15

Optimization problems:

Find the nest solution from a large space of possibilities-

May have constraints on solution-

Must have an objective way to judge solutions-

Global Search / Exhaustive: search all possible solutions to find the best

Local Search: Break the global search into series of simpler local search

Greedy Algorithms: Reach the optimal solution by taking the optimal decision every time

Proving Correctness:

Let I be any instance of our problem, GS be the greedy algorithm’s solution, and OS be any other solution.

If minimization: show Cost (OS) ≥ Cost(GS)

If maximization: show Value(GS) ≥ Value (OS)

Optimization, Global/Local Search, Greedy

Algorithms
Thursday, October 20, 2022 3:29 PM

 CSE 101 Page 16

Bipartite: Graph such that there is a set S and all edges go from S to V - S

Matching: Given a bipartite graph, select a set of edges such that each node has degree 1

Bipartite Matching
Thursday, October 27, 2022 3:59 PM

 CSE 101 Page 17

Idea: Break problem into smaller subproblems and recursively solve

Divide and Conquer
Tuesday, November 1, 2022 3:36 PM

 CSE 101 Page 18

Let G be a greedy solution and g be a greedy choice the algorithm makes1.

Let OS be a solution achieved by not choosing g2.

Show how to transform OS into OS' that chooses g and is at least as good as OS

Must show OS' is valid○

Must show OS' is better than OS○

3.

Use 1-3 to move closer to G OR Use 1-3 in induction to show that we can always make choices consistent with G4.

Exchange Argument
Tuesday, October 18, 2022 4:34 PM

 CSE 101 Page 19

Define a progress measure

Show that the greedy solution is ahead in the progress measure compared to any arbitrary solution at all points

Use to establish the optimality of the algorithm

Greedy Stays Ahead
Thursday, October 27, 2022 4:39 PM

 CSE 101 Page 20

Master Theorem
Thursday, November 3, 2022 3:57 PM

 CSE 101 Page 21

Idea: Take two sorted arrays and combine them into larger sorted array

Time analysis:

Merge: O(n)

MergeSort: T(n) = 2T(n/2) + n

O(n*log(n))

MergeSort
Tuesday, November 1, 2022 3:38 PM

 CSE 101 Page 22

Idea: Perform partial products and then combine, we will also leverage the fact that addition is cheaper than

multiplication

Runtime:

T(k) = 3T(k/2) + O(k)

Max k = log(n)

Total: O(3^log(n)) = O(n^log(3))

Fast Multiply
Tuesday, November 1, 2022 3:47 PM

 CSE 101 Page 23

Select

Problem: Given a list of numbers, find the kth largest element

Idea: We can pick a random pivot and separate into groups of values smaller (SL), equal (Sv), and larger (SR) than the

pivot

If k |SL| then k in SL

If k |SL| + |Sv| then k in Sv

If k |SL| + |Sv| then k in SR

Runtime:

In the best case, |SL| = |SR| then T(n) = T(n/2) + O(n) and runtime is O(n)

In the worst case, v is the minimum then T(n) = T(n-1) + O(n) and runtime is O(n^2)

Quicksort

Runtime: Since we need to recurse on both sides, the runtime can be approximated to O(nlogn)

QuickSelect

Idea: split array into sets of 5 and find medians of sets. Then find medians of medians by recursion.

Runtime: T(n) = T(n/5) + T(7n/10) + O(n) -> O(n)

Selection, Quicksort, QuickSelect,

MedianOfMedians
Thursday, November 3, 2022 3:54 PM

 CSE 101 Page 24

Scope: problems asking to find the optimal solution in a large solution space

Idea: Like D&C, we can solve a smaller subproblem. But, Backtracking usually reduces problem by constant size rather than

factor

Ex: Maximal independent set

Given graph G with, find the largest set such that no two members are connected by an edge

Solution: On some decision to pick vertex V then:

If we pick V, then recurse on G - {A A's neighbors}-

If we don’t pick V, then recurse on G - {V}-

Additionally, if degree(V) = 0 or 1 then we will always pick V anyways-

Runtime: T(n) = T(n - 1) + T(n - 3) + O(n) : O(1.46^n)

Backtracking, Maximum Independent Set
Thursday, November 10, 2022 3:32 PM

 CSE 101 Page 25

Ex: Given the event scheduling problem, add weights to each event and try to maximize the total weight of the schedule

Solution: Sort the events by end time. Pick the last ending event and recurse on the two cases

If the event is included, recurse on the schedule without all conflicting events-

If the event is not included, recurse on the schedule without this event-

Runtime: T(n) = 2T(n-1) + O(n) = O(2^n)

Note: All recursive calls are the form (I1 … Ik), so there are only n-1 total calls

Weighted Event Scheduling
Thursday, November 10, 2022 4:35 PM

 CSE 101 Page 26

When performing backtracking, save all intermediate steps so repeated steps are not recomputed

Ex: for Weighted Event Scheduling: create array and store intermediate steps (I1 … Ik) at index k

Memoization
Thursday, November 17, 2022 3:54 PM

 CSE 101 Page 27

Define subproblems are corresponding array1)

Define bases cases2)

Define recursion for sub problems (case analysis)3)

Order the subproblems4)

Define final output5)

Put all together in iterative algorithm that fills in the array6)

Ex: Find the max value among all valid schedules of (I1 … In)

Let A[k] be the max value among all valid schedules of (I1 … Ik)1)

A[0] = 02)

Case 1: Ik is in the max schedule, A[k] = value(Ik) + A[j] where j is the last interval to end before Ik starts3)

Case 2: Ik is not in the schedule, A[k] = A[k-1]

A[k] = max(Case 1, Case 2)

Since each subproblem is dependent on smaller index, order 0 to n4)

Final output = A[n]5)

6)

Ex: Given items with value v[1] … v[n] and weight w[1] … w[n] and max weight of C

Let A[j, b] be the max value given items 1 … j with max weight b1)

A[j, 0] = 0, A[0, b] = 02)

Case 1: Item j is in the max for weight b, A[j, b] = v[j] + A[j, b - w[j]]3)

Case 2: Item j is not in the max weight b, A[k, w] = A[j - 1, b]

4)

Final output = A[n, C]5)

6)

Dynamic Programming
Thursday, November 17, 2022 3:57 PM

 CSE 101 Page 28

